
 

Affordable Modular Autonomous Vehicle 
Development Platform 

 

Benedict Quartey 
 Computer Science Department 

Ashesi University   
Accra, Ghana 

benedict.quartey@alumni.ashesi.edu.gh 

 

G. Ayorkor Korsah 
 Computer Science Department 

Ashesi University   
Accra, Ghana 

akorsah @ashesi.edu.gh

Abstract—Road accidents are estimated to be the ninth leading 
cause of death across all age groups globally. 1.25 million people 
die annually from road accidents and Africa has the highest rate 
of road fatalities [1].  Research shows that three out of five road 
accidents are caused by driver-related behavioral factors [2]. 
Self-driving technology has the potential of saving lives lost to 
these preventable road accidents. Africa accounts for the 
majority of road fatalities and as such would benefit immensely 
from this technology. However, financial constraints prevent 
viable experimentation and research into self-driving technology 
in Africa. This paper describes the design of RollE, an affordable 
modular autonomous vehicle development platform. It is capable 
of driving via remote control for data collection and also capable 
of autonomous driving using a convolutional neural network. 
This system is aimed at providing students and researchers with 
an affordable autonomous vehicle to develop and test self-driving 
car technology. 

Keywords—modular autonomous vehicle, convolutional 
neural network, self-driving. 

I. INTRODUCTION  
Road accidents are estimated to be the ninth leading cause 

of death across all age groups globally. The annual estimated 
global tally of deaths as a result of road accidents hovers 
around 1.25 million people [1]. These accidents are mostly due 
to preventable human driver error [2] and autonomous vehicles 
provide a prospective solution to this problem. Interest in the 
potential of autonomous vehicles has grown substantially in the 
past four years. As of June 2017, the research institution 
Brookings estimated the total investment in research and 
development of autonomous vehicles by industry leaders to 
have grown from under $1 billion in late 2014 to about $80 
billion [3]. 

Africa lags behind in this field as the investment data 
provided by Brookings reveals that the $80 billion research and 
development transactions and acquisitions stated earlier are 
situated in already developed economies. While these 
investments show the interest in autonomous vehicles and spell 
out an exciting future for artificial intelligence, it also shows 
the unequal global distribution of knowledge and resources in 
this field. 

African universities and corporations are yet to make 
attempts to bridge this gap in research into self-driving cars. 
However, about 90% of the global death toll due to road 
accidents occur in low and middle-income countries; a 
category in which most African countries fall. In 2015 alone, 
256,719 lives were lost to road accidents on the continent [1]. 
This single statistic shows the importance of Africa developing 
capability in self-driving research and development.  

Financial constraints are a major roadblock to self-driving 
research in Africa as typical autonomous vehicle projects 
require considerable resources. For instance, Stanford 
university’s autonomous vehicle Stanley required dedicated 
funding from sponsors such as VW, Redbull and Intel, among 
others [4]. Equipment typically used in these autonomous cars 
such as Velodyne scanners and ring laser gyroscopes can cost 
as much as $85,000 and $20,000 respectively [5].  

There exists a plethora of commercial and open source 
robot programming simulation software such as Webots [6], 
ROS [7] and Gazebo [8] designed to abstract hardware and 
provide sophisticated tools for single and multi-robot 
programming. These options seem viable for low cost 
experimentation involving autonomous robots, and, in fact, a 
majority of algorithms can be tested in simulated 
environments. However, the practical usefulness of these 
simulated environments in validating algorithms for real life 
probabilistic tasks can be diminished due to the uncertainties, 
constraints and challenges introduced by the real world [9]. 
This makes it imperative that self-driving research be 
conducted on physical hardware subject to these constraints 
and challenges and necessitates the existence of an affordable 
physical platform for cost efficient self-driving research.  

This paper introduces and describes the design of RollE, a 
novel affordable modular scaled-down autonomous vehicle 
platform designed to reduce the barrier to entry into self-
driving research, in terms of cost of equipment. This platform 
aims to accelerate self-driving research in Africa by providing 
students and researchers with a low cost autonomous vehicle to 
test ideas and build self-driving technology using machine 
learning techniques similar to those used in the industry. Fig. 1 
shows an image of the RollE Rover (autonomous vehicle). 
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II. RELATED WORK 
Progressive developments in the pursuit of self-driving cars 

has led to technologies such as cruise control and Advanced 
Driver Assistance Systems (ADAS). These systems have been 
aimed at extending the sensory capabilities of human drivers to 
make the driving experience safer. This additional intelligent 
functionality however is described as level 1 autonomy. RollE 
attempts level 4 autonomy, this would allow it to act without 
human input in constrained or specific environments. 
Breakthroughs in the fields of computer vision, visual 
convolutional neural networks for image recognition and 
classification, as well as general advances in machine learning 
have made achieving such an autonomous system possible.  

The most important implementations of autonomous 
vehicles this project closely models are Nvidia’s end-to-end 
self-driving car experiment [10] and Stanford University’s 
Stanley [11]–winner of the 2005 DARPA Grand Challenge 
[12]. 

In Nvidia’s implementation of an end-to-end self-driving 
system, a single front facing camera was used to feed real-time 
images into a convolutional neural network [10]. This neural 
network then predicted suitable steering angles. This system 
used supervised training, thus data from human drivers was 
used to train the neural network. This particular end-to-end 
approach to self-driving is what RollE employs. 

Stanford University’s self-driving car, Stanley applied a 
more complex approach to self-driving. Unlike Nvidia’s 
implementation that used a single camera, Stanley employed 
the use of multiple sensor systems for environment perception. 
These included radars, a camera, laser range finders and GPS 
antennas. This plethora of sensory data is integrated using an 
unscented Kalman filter to provide a much more accurate 
localization system [11]. Research enabling this approach of 
complex sensor fusion can typically span decades [5]. In the 
spirit of creating a basic and affordable but scalable and 
extensible autonomous vehicle development platform, RollE 
does not use this approach. However, techniques such as 
decentralized execution of software modules, timestamped data 
and publish-subscribe based inter-process communication used 
by the Stanford team improved RollE’s end-to-end 
implementation.  

Similar low-cost robotics platforms such as the Evobot [9], 
ExaBot [13], and Duckiebot [14] have been developed for 
educative and research purposes. Duckiebot particularly targets 
self-driving research and provides interesting functionality 
such as lane following, localization and obstacle avoidance 
[14]. It also comes in a range of three different configurations 
based on hardware specifications and functionality. 

These systems have proved very useful in the proliferation 
of robotics research. However, they are based on differential 
steering and as such do not adequately represent the mechanics 
of actual wheeled vehicles, which use variations of 
proportional steering systems. RollE provides an all-in-one 
proportional steering autonomous vehicle development 
platform complete with a programmable remote controller for 
manual wireless driving and data collection. Thus, it provides a 
platform that more closely represents full-scale autonomous 
vehicles. 

III. OVERVIEW OF THE ROLLE SELF-DRIVING SYSTEM 
The machine learning approach this project uses is an end-

to-end one, meaning that sensor data–in this case, camera 
images–is directly passed as input to a machine learning 
algorithm that would in turn output steering and throttle 
commands. With this approach, the machine learning model is 
not explicitly taught to identify hand engineered features such 
as outlines of roads. The system learns necessary 
representational features on its own directly from the training 
data provided. 

A front-facing camera connected to the on-board computer 
(a Raspberry Pi) acts as the single exteroceptive sensory node 
of RollE. RollE has two primary modes of operation:  

• Data collection mode  

• Autonomous mode 

When in the data collection mode, RollE is controlled by a 
human agent using either the RollE Pilot (remote controller) or 
a console remote-control application (Soft Pilot). In this mode, 
image frames are captured from the camera at a resolution of 
200x66 and a frame rate of 32 fps. Each frame is stored with a 
timestamp and the corresponding throttle and steering values 
sent from the remote controller at the time of capture. At the 
end of a data collection run, the images are stored in a folder 
and the records of steering and throttle commands compiled 
and saved in a csv file. The data from a data collection run is 
used to train an end-to-end convolutional neural network based 
on the architecture used by Nvidia in their self-driving car 
experiment [10] and implemented using Keras, a neural 
network application programming interface.  

In autonomous mode, RollE is controlled by an autopilot. 
The camera repeatedly captures frames of its environment and 
the autopilot software, running locally on RollE, uses the 
trained convolutional neural network model to predict steering 
angles for each frame. The throttle value for speed control is 
set to a constant value. The captured image frames and steering 
predictions are also transmitted via a socket connection to a 
user’s computer for visualization. 

Fig. 1. RollE Rover, a modular autonomous vehicle 



 

IV. DESIGN AND IMPLEMENTATION OF ROLLE 
RollE is an autonomous vehicle built using a 1/16 scale 

remote control (RC) vehicle as the mobile base. Despite the 
fact that RollE is built on top of an RC car, similar 
technologies and machine learning frameworks used in full 
scale autonomous cars are used in developing this platform. 
This makes the software system potentially scalable to larger 
car platforms with minimal changes to the code base. The 
RollE system can be considered as having four layers: the 
physical layer which consists of hardware components, and a 
collection of three logical layers namely Perception, Control 
and Learning. The term logical layer as used here refers to 
conceptual layers representing the organization of related 
software units. 

A. Physical Layer 
One of the objectives of RollE is to be modular; as such the 

system consists of a number of interacting physical 
components. The hardware components that make up the 
physical layer are: 

• RC Car: this is a 1/16 scale Exceed Blaze RC car that 
acts as the mobile base of RollE. The Exceed Blaze 
was chosen for its build quality and proportional 
steering, which unlike the differential steering 
mechanism used in some mobile robots [9,13,14], 
closely imitates the steering mechanism of an actual 
car. The RC car has actuators and effectors that enable 
RollE to move in its environment. The Exceed Blaze 
has the following electronic components: 

o 7.2volt brushed direct current (DC) motor 
which acts as the throttle motor 

o MG996R servo motor which controls 
steering 

o WP-1040-Brushed Electronic Speed 
Controller (ESC) 

o 6 cell 1100 milliamp hour (mAH) 7.2 volt 
Nickel Metal Hydride (Ni-MH) battery pack 

o 4-channel 2.4 gigahertz (GHz) receiver and 
transmitter 

• RollE Pilot: this is a remote controller designed to 
enable a user to manually drive the vehicle. It consists 
of the following components: 

o One Arduino Uno, an open source 
microcontroller designed to enable reading 
sensor inputs, performing computation and 
effecting physical outputs through electronic 
components. It serves as the brain of the 
remote controller 

o A pair of XY axes joystick modules, each 
built from two potentiometers set up in a 2 -
dimensional fashion, enabling the movement 
of a central arm along the X and Y axes to be 
measured 

o One liquid crystal display (LCD) module 
which displays information 

• Raspberry Pi: this is a single board computer that acts 
as the on-board processor of RollE. The Raspberry Pi 
was chosen for its affordable price point, as well its 
plethora of I/O ports which gives the end users of 
RollE the freedom to add on various other sensors. 
The inbuilt general-purpose input/output (GPIO) pins 
provide an interface to programmatically 
communicate with low-level sensors and electronic 
devices such as the ESC and servo motor on the 
Exceed Blaze 

• Raspberry Pi Camera: this is a single board module 
fitted with a 5MP Omnivison 5647 fixed focus sensor. 
It is capable of taking high resolution images and 
gives RollE the ability to perceive its environment 

• Router: this creates an on-board wireless network that 
enables a user to wirelessly communicate with RollE 
over considerable distances 

• Adafruit PCA9685 16-channel pulse width 
modulation (PWM) driver: this component enables 
programmatic control of the steering servo motor and 
throttle DC motor on the Exceed Blaze via pulse 
width modulation signals 

 These hardware components are assembled to form the 
complete RollE system which consists of the RollE Rover 
(mobile vehicle) and RollE Pilot (remote controller). The cost 
of the complete RollE system is under $250. 

RollE Rover: The default setup of the RC car wired the battery 
pack and throttle motor to the electronic speed control. The 
steering servo and ESC were connected to separate channels on 
the 2.4 gigahertz receiver, enabling the car to be controlled via 
a radio transmitter. We maintained the connection between the 
battery pack, ESC and throttle motor. However, the steering 
servo and ESC were rewired from the receiver to individual 
channels on an Adafruit PCA9685 PWM driver. The PWM 
driver was then connected to a Raspberry Pi via the on-board 
ground (GND), voltage common collector (VCC), serial clock 
(SCL) and serial data signal (SDA) GPIO pins. This 
connection enables programmatic control of the servo and 
throttle motors via pulse width modulation. The technique of 
pulse width modulation enables a user to programmatically 
vary the speed of the throttle motor or specify the desired angle 
of turn of the steering servo motor. A Raspberry Pi camera, 
which acts as RollE’s visual sensory node, was also connected 
to the Raspberry Pi. Fig. 2 illustrates the final component 
connections for the RollE Rover. 

A collection of modular 3D printable components designed in 
Autodesk Fusion 360 provide a functional and aesthetic way to 
attach all the components of the RollE Rover to the mobile RC 
car platform. These components are designed to vertically 
stack on top of a base structure. This enables end users to 
vertically stack additional components and sensors. 



 

RollE Pilot: An Arduino Uno acts as the brain of the remote 
controller; it takes sensor readings, performs computation and 
outputs information. A pair of XY axes joysticks acts as the 
sensors in this system; each joystick is connected to the 
Arduino in a fashion that restricts readings to one axis per 
joystick. With this configuration, one joystick takes readings 
from the X-axis and controls throttle while the other takes 
readings from the Y-axis and controls steering. An LCD 
module displays the real-time readings from each joystick and 
prints out error messages. Sensor readings from joysticks are 
analog and fall in a range of values from 0 to 1023. These 
values are remapped to a range between -1 to 1 and are 
transmitted via serial communication from the Arduino to a 
python script that separates each joystick’s reading and 
broadcasts the values to the RollE Rover for actuation. Details 
on this communication between the remote controller and the 
rover are discussed in the logical layers section, under the 
control layer.  

Much like the RollE Rover, the remote controller also has 
a collection of 3D printable components designed to hold all 
components in a functional and aesthetic fashion. The base 3D 
component of the remote controller allows it to be attached to 
a standard breadboard, enabling end users to experiment with 
the remote and attach additional components. Fig. 3 shows a 
diagram of the component connections for the RollE pilot. 

B. Logical Layers 
The logical layers of the system each contain a collection of 

related software units or processes that work together to 
accomplish some goal. Processes within a layer can 
communicate with each other as well as communicate with 
processes from other layers. Inter-process communication is 
achieved through a publish/subscribe-based communication 
system. This allows processes to subscribe to specific topics of 
interest in order to receive broadcast messages published on 

those topics by other processes. RollE’s communication 
architecture is implemented using the lightweight Message 
Queuing Telemetry Transport (MQTT) protocol built for 
connecting devices on networks with minimal bandwidth. 
RollE consists of the following interacting logical layers: 

• Control: the software units in this layer serve as an 
interface between the user and the hardware 
components of the physical layer. They are also 
responsible for converting steering predictions from 
processes in the learning layer into specific pulse 
values the PCA9685 PWM module can understand. 
This layer also contains a command-line software 
implementation of the RollE Pilot (remote controller). 
This console application gives users discrete control 
of the throttle and steering values that drives RollE. 

• Perception:  the software units in this layer mainly 
implement computer vision procedures for capturing, 
formatting and either transmitting or locally storing 
images obtained from the on-board camera sensor.  

• Learning: the software units in this layer deal with 
machine learning. They specify the architecture for 
machine learning models and contain code that 
manage data processing, data augmentation, training 
the machine learning model and transmitting 
predictions from trained models to other processes. 
The machine learning model architecture of choice for 
this problem domain is a convolutional neural 
network. Convolutional neural networks are 
multilayer perceptron machine learning algorithms 
optimised for analysing visual data and feature 
extraction by incrementally applying convolutional 
operations to images at certain layers of the network. 

Fig. 2. Diagram of the RollE Rover's component connections 



 

 

1) Control Layer  
 This layer contains a collection of software units that 
directly interface with the components of the physical layer. 
The software in this layer has three primary functions: 

• provide programmatic control of the steering and 
throttle motors of the RollE rover 

• take joystick position readings and control the LCD 
display on RollE Pilot 

• transmit steering and throttle values from RollE Pilot 
to the rover 

 
Four software units “Actuation.py”, “RollE_Pilot.ino” and 

“Pilot_Transmitter.py / Soft_Pilot.py” respectively provide this 
functionality. 
 
Actuation.py: This python script runs on the Raspberry Pi on 
the RollE rover and uses the Adafruit_PCA9685 library to 
specify which signals the PWM module sends to steering and 
throttle motors. Input values are remapped from a range of -1 
to 1 into pulse signals that correspond to maximum and 
minimum duty cycles. This technique associates the maximum 
and minimum steering servo angles and throttle motor speeds 
with a value of -1 and 1 respectively. All values between this 
range then represents different steering positions or throttle 
speeds. As an example, a steering value of -1 would turn the 
steering servo to its maximum position on the left, while a 
steering value of 0 would turn the steering servo to its middle 
position; similar logic applies to throttle speeds. 

Limiting motor control inputs to the range -1 to 1 simplifies 
controlling RollE for end users as they can create higher level 
programs and only have to think of steering and throttle 

outputs in terms of proportionality as opposed to raw duty 
cycles. This also allows users to make simple modifications to 
global maximum and minimum duty cycle values in 
Actuation.py to change the range of responsiveness or 
sharpness of steering turns without changing the outputs from 
their higher-level programs. An example of such higher-level 
programs is the software implementation of the RollE pilot. 
This program takes keyboard inputs from users and outputs 
steering and throttle values in the range -1 to 1 to control 
RollE. 
 
RollE_Pilot.ino: This Arduino sketch controls the RollE Pilot. 
It takes readings from the 2-dimensional potentiometers that 
make up each joystick module and remaps these analog values 
from a range of 0 to 1024 to values in the range -1 to 1. It also 
controls a 20x4 LCD module which displays the real-time 
remapped steering and throttle values from the joysticks. This 
code is flashed and ran on the onboard microcontroller of the 
RollE Pilot. 
 
Pilot_Transmitter.py / Soft_Pilot.py: The pilot_Transmitter.py 
script communicates with the RollE Pilot via a serial interface 
and transmits steering and throttle values obtained from the 
controller to the RollE rover via the MQTT protocol. 
Soft_Pilot.py is also a command-line software implementation 
of the physical remote controller; it accepts user keyboard 
inputs and outputs steering and throttle values in the -1 to 1 
range to RollE also via the MQTT protocol. A user connects 
the RollE Pilot to their computer and the Pilot_Transmitter.py 
program, which runs on the user’s computer, transmits real-
time steering and throttle values to the “RollE_MKII/throttle” 
and “RollE_MKII/steering topics” respectively. Actuation.py 
subscribes to these topics, thus receives the transmitted steering 

Fig. 3. Diagram of RollE Pilot's component connection 



 

and throttle values and converts them to PWM duty cycles to 
drive RollE. 
 

2) Perception Layer 
The software units in this layer implement computer vision 

procedures for capturing, formatting and either transmitting or 
locally storing images obtained from the on-board camera 
sensor of the RollE rover. In the data collection mode, images 
are stored locally on the Raspberry Pi. In autonomous mode, 
images are served as inputs to a trained neural network model 
running locally on the Raspberry Pi for steering predictions. 
These images can also be transmitted via a socket connection 
to the user’s computer for visualization. The computer vision 
pre-processing operations performed on each image frame as 
shown in Fig. 4 are: 

i. a 180-degree rotation on captured images, done 
because restrictions in the length of ribbon cable that 
connects the Pi camera to the Raspberry Pi forced the 
camera to be placed upside down during assembly of 
the rover 

ii. image is cropped to remove unwanted parts of image 
above track.  

iii. image is resized to fit the shape that the convolutional 
neural network accepts. The acceptable shape must 
have an image height of 66 pixels, width of 200 pixels 
and 3 colour channels (3@66x200) 

iv. the colour model of the image frame is converted 
from RGB to the YUV colour space. The YUV colour 
space represents images with one luma component 
(Y) and two chrominance components (UV). The 
input image is split into these individual YUV planes 
before being passed into the convolutional network 
for feature extraction.   

3) Learning Layer 
The software units in this layer deal with machine learning. 

They specify the architecture of machine learning models and 
contain code that manage data processing, data augmentation, 
training the model and transmitting predictions from trained 
models to other processes.  The model used for this system is a 
convolutional neural network based on the end-to-end 
architecture shown in Fig. 5 and used by Nvidia in their self-
driving car experiment. For this project this convolutional 
neural network architecture was implemented using Keras, a 
deep neural network application programming interface–with 
Tensorflow as the backend.  

After data is collected during a data collection run, the 
recorded collection of image frames and steering labels are 
used for training. Data augmentation remains one of the easiest 
methods to reduce overfitting in convolutional neural networks 
[15], as such it is performed on the training examples to 
produce variations that help the model learn more from 
existing examples and reduce overfitting. Two key data 
augmentation operations, random horizontal flips and random 
shadowing are performed on training examples. Randomly 
selected training examples are horizontally flipped, and their 
corresponding steering angles negated to create new data 
samples. Random shadows are also created on some training 
examples to help the model learn how to handle real-world 
scenarios where sections of captured images are dark due to 
shadows from objects. Much like the approach used by 
Krizhevsky et al. in AlexNet [15], the augmentation is done in 
real time during training by a python batch generator which 
allows generation of images without storing to disk. Fig. 6 
shows sample augmented images. 

 

Fig. 4. Sequence of image pre-processing steps. First image in 
sequence is an original upside-down image as captured by RollE 

Fig. 5. End to End convolutional neural network architecture 
developed by Nvidia researchers [11] 



 

V.  EVALUATION 
Two tests were conducted to evaluate the two primary modes 
of RollE: the data collection mode and the autonomous mode.  

A. Data collection  
To ensure that the entire pipeline of data collection 

processes functioned optimally, we drove the RollE Rover with 
the remote controller in data collection mode on a tiled path 
bordered on both sides by lawns as shown in Fig. 7. At the end 
of this run, a total of 3147 images were captured and stored 
with timestamps on the processor of the rover. A comma 
separated values (CSV) file with the paths to the stored images 
labelled with steering and throttle values was also created at the 
end of the data collection run. This confirmed that the data 
collection process worked as expected. 

B. Autonomous drive  
The autonomous drive test ensured that once a model has 

been trained, RollE can successfully drive itself on tracks 
similar to what it was trained on. The convolutional neural 
network model was trained using the data collected in the data 
collection test described earlier. Eighty percent of the gathered 
data was used as the training set and the remaining twenty 
percent as the validation set. The model was trained for 10 
epochs with a learning rate of 0.0001. Performing the random 
data augmentation operations described earlier, we generated 
and trained on 20,000 samples each epoch. The mean squared 
error of the trained model on the validation set at the final 
epoch was an impressive 0.028. Fig. 8 shows a graph of the 
mean squared errors of the model plotted for both validation 
and training set at each epoch. 

After training the model, RollE was set on the tiled path 
and put in autonomous mode. It was observed that RollE 
exhibited intelligence and intentionality in its driving. It 
successfully made corrective turns to avoid the lawns and stay 
on the tiled path. However, RollE seemed to favour driving 
towards the left and after a couple of meters, it completely 
swayed to the left and ended up on the lawn. This behaviour 
was due to the distribution of the training data; while collecting 
data we favoured steering towards the left on the remote 
controller. The horizontal flipping data augmentation operation 
helped balance out this data. However, the magnitude of 
training examples with steering towards the left forced this 
behaviour to be incorporated in the model. 

Fig. 9 shows the distribution of steering values for a random 
sample of 100 training examples. It can be seen that, most of 
the steering was either towards the left (-1) or in the resting 
position (0) in the original data. After performing data 
augmentation, the data distribution became more balanced. 
However, it is clear that left steering values would still be 
favoured by the predictive model. The limitation of data 
depending on the ability of a human agent necessitates that the 
human agent generating the data drives RollE in a fairly 

Fig. 6. Sample images showing results of data augmentation 

Fig. 8. Graph showing the mean squared errors of the convolutional neural network 
model during training. Model shows very good learning and a desired absence of 

overfitting. 

Fig. 7. RollE on tiled path bordered on both sides by lawns as described in 
Data collection section  



 

consistent fashion. Future work could experiment with some 
self-supervised learning techniques as proposed by Stavens [5], 
to eliminate the possibility of inconsistent data due to human 
error. RollE was driven once again in a fairly consistent 
manner on a different track shown in Fig. 10. A video showing 
a data collection and autonomous driving demonstration of 
RollE on this track can be seen in [16].  

VI. CONCLUSION 
This paper discussed the design of RollE, a low-cost 

proportional steering autonomous vehicle development 
platform. We have demonstrated with RollE that an affordable 
autonomous vehicle (~$250) built with hobby grade electronics 
can effectively be used to implement self-driving ideas using 
scalable technology such as machine learning. The modular 
nature of the software and hardware infrastructure of RollE 
provides an affordable skeleton that would enable further 
developmental work on the independent layers. RollE is 
designed to be a research tool, equipping self-driving 
researchers with a low-cost platform to test ideas and build 
autonomous driving technology.  

While the default end-to-end machine learning model 
works quite well, further work can be done using the tools 
provided by RollE to develop and test other machine learning 
techniques. Future research on self-supervised learning 
methods would be useful to eliminate the possibility of 
inconsistent data collection. The physical layer would also 
benefit from the addition of a Global Positioning System (GPS) 
module, ultrasonic sensors and Light Detection and Ranging 

(LIDAR) sensor for precise localization, obstacle avoidance 
and advanced perception respectively.  
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