

Affordable Modular Autonomous Vehicle
Development Platform

Benedict Quartey
 Computer Science Department

Ashesi University
Accra, Ghana

benedict.quartey@alumni.ashesi.edu.gh

G. Ayorkor Korsah
 Computer Science Department

Ashesi University
Accra, Ghana

akorsah @ashesi.edu.gh

Abstract—Road accidents are estimated to be the ninth leading
cause of death across all age groups globally. 1.25 million people
die annually from road accidents and Africa has the highest rate
of road fatalities [1]. Research shows that three out of five road
accidents are caused by driver-related behavioral factors [2].
Self-driving technology has the potential of saving lives lost to
these preventable road accidents. Africa accounts for the
majority of road fatalities and as such would benefit immensely
from this technology. However, financial constraints prevent
viable experimentation and research into self-driving technology
in Africa. This paper describes the design of RollE, an affordable
modular autonomous vehicle development platform. It is capable
of driving via remote control for data collection and also capable
of autonomous driving using a convolutional neural network.
This system is aimed at providing students and researchers with
an affordable autonomous vehicle to develop and test self-driving
car technology.

Keywords—modular autonomous vehicle, convolutional
neural network, self-driving.

I. INTRODUCTION
Road accidents are estimated to be the ninth leading cause

of death across all age groups globally. The annual estimated
global tally of deaths as a result of road accidents hovers
around 1.25 million people [1]. These accidents are mostly due
to preventable human driver error [2] and autonomous vehicles
provide a prospective solution to this problem. Interest in the
potential of autonomous vehicles has grown substantially in the
past four years. As of June 2017, the research institution
Brookings estimated the total investment in research and
development of autonomous vehicles by industry leaders to
have grown from under $1 billion in late 2014 to about $80
billion [3].

Africa lags behind in this field as the investment data
provided by Brookings reveals that the $80 billion research and
development transactions and acquisitions stated earlier are
situated in already developed economies. While these
investments show the interest in autonomous vehicles and spell
out an exciting future for artificial intelligence, it also shows
the unequal global distribution of knowledge and resources in
this field.

African universities and corporations are yet to make
attempts to bridge this gap in research into self-driving cars.
However, about 90% of the global death toll due to road
accidents occur in low and middle-income countries; a
category in which most African countries fall. In 2015 alone,
256,719 lives were lost to road accidents on the continent [1].
This single statistic shows the importance of Africa developing
capability in self-driving research and development.

Financial constraints are a major roadblock to self-driving
research in Africa as typical autonomous vehicle projects
require considerable resources. For instance, Stanford
university’s autonomous vehicle Stanley required dedicated
funding from sponsors such as VW, Redbull and Intel, among
others [4]. Equipment typically used in these autonomous cars
such as Velodyne scanners and ring laser gyroscopes can cost
as much as $85,000 and $20,000 respectively [5].

There exists a plethora of commercial and open source
robot programming simulation software such as Webots [6],
ROS [7] and Gazebo [8] designed to abstract hardware and
provide sophisticated tools for single and multi-robot
programming. These options seem viable for low cost
experimentation involving autonomous robots, and, in fact, a
majority of algorithms can be tested in simulated
environments. However, the practical usefulness of these
simulated environments in validating algorithms for real life
probabilistic tasks can be diminished due to the uncertainties,
constraints and challenges introduced by the real world [9].
This makes it imperative that self-driving research be
conducted on physical hardware subject to these constraints
and challenges and necessitates the existence of an affordable
physical platform for cost efficient self-driving research.

This paper introduces and describes the design of RollE, a
novel affordable modular scaled-down autonomous vehicle
platform designed to reduce the barrier to entry into self-
driving research, in terms of cost of equipment. This platform
aims to accelerate self-driving research in Africa by providing
students and researchers with a low cost autonomous vehicle to
test ideas and build self-driving technology using machine
learning techniques similar to those used in the industry. Fig. 1
shows an image of the RollE Rover (autonomous vehicle).

Benedict Quartey
10.1109/ICASTECH.2018.8506757

II. RELATED WORK
Progressive developments in the pursuit of self-driving cars

has led to technologies such as cruise control and Advanced
Driver Assistance Systems (ADAS). These systems have been
aimed at extending the sensory capabilities of human drivers to
make the driving experience safer. This additional intelligent
functionality however is described as level 1 autonomy. RollE
attempts level 4 autonomy, this would allow it to act without
human input in constrained or specific environments.
Breakthroughs in the fields of computer vision, visual
convolutional neural networks for image recognition and
classification, as well as general advances in machine learning
have made achieving such an autonomous system possible.

The most important implementations of autonomous
vehicles this project closely models are Nvidia’s end-to-end
self-driving car experiment [10] and Stanford University’s
Stanley [11]–winner of the 2005 DARPA Grand Challenge
[12].

In Nvidia’s implementation of an end-to-end self-driving
system, a single front facing camera was used to feed real-time
images into a convolutional neural network [10]. This neural
network then predicted suitable steering angles. This system
used supervised training, thus data from human drivers was
used to train the neural network. This particular end-to-end
approach to self-driving is what RollE employs.

Stanford University’s self-driving car, Stanley applied a
more complex approach to self-driving. Unlike Nvidia’s
implementation that used a single camera, Stanley employed
the use of multiple sensor systems for environment perception.
These included radars, a camera, laser range finders and GPS
antennas. This plethora of sensory data is integrated using an
unscented Kalman filter to provide a much more accurate
localization system [11]. Research enabling this approach of
complex sensor fusion can typically span decades [5]. In the
spirit of creating a basic and affordable but scalable and
extensible autonomous vehicle development platform, RollE
does not use this approach. However, techniques such as
decentralized execution of software modules, timestamped data
and publish-subscribe based inter-process communication used
by the Stanford team improved RollE’s end-to-end
implementation.

Similar low-cost robotics platforms such as the Evobot [9],
ExaBot [13], and Duckiebot [14] have been developed for
educative and research purposes. Duckiebot particularly targets
self-driving research and provides interesting functionality
such as lane following, localization and obstacle avoidance
[14]. It also comes in a range of three different configurations
based on hardware specifications and functionality.

These systems have proved very useful in the proliferation
of robotics research. However, they are based on differential
steering and as such do not adequately represent the mechanics
of actual wheeled vehicles, which use variations of
proportional steering systems. RollE provides an all-in-one
proportional steering autonomous vehicle development
platform complete with a programmable remote controller for
manual wireless driving and data collection. Thus, it provides a
platform that more closely represents full-scale autonomous
vehicles.

III. OVERVIEW OF THE ROLLE SELF-DRIVING SYSTEM
The machine learning approach this project uses is an end-

to-end one, meaning that sensor data–in this case, camera
images–is directly passed as input to a machine learning
algorithm that would in turn output steering and throttle
commands. With this approach, the machine learning model is
not explicitly taught to identify hand engineered features such
as outlines of roads. The system learns necessary
representational features on its own directly from the training
data provided.

A front-facing camera connected to the on-board computer
(a Raspberry Pi) acts as the single exteroceptive sensory node
of RollE. RollE has two primary modes of operation:

• Data collection mode

• Autonomous mode

When in the data collection mode, RollE is controlled by a
human agent using either the RollE Pilot (remote controller) or
a console remote-control application (Soft Pilot). In this mode,
image frames are captured from the camera at a resolution of
200x66 and a frame rate of 32 fps. Each frame is stored with a
timestamp and the corresponding throttle and steering values
sent from the remote controller at the time of capture. At the
end of a data collection run, the images are stored in a folder
and the records of steering and throttle commands compiled
and saved in a csv file. The data from a data collection run is
used to train an end-to-end convolutional neural network based
on the architecture used by Nvidia in their self-driving car
experiment [10] and implemented using Keras, a neural
network application programming interface.

In autonomous mode, RollE is controlled by an autopilot.
The camera repeatedly captures frames of its environment and
the autopilot software, running locally on RollE, uses the
trained convolutional neural network model to predict steering
angles for each frame. The throttle value for speed control is
set to a constant value. The captured image frames and steering
predictions are also transmitted via a socket connection to a
user’s computer for visualization.

Fig. 1. RollE Rover, a modular autonomous vehicle

IV. DESIGN AND IMPLEMENTATION OF ROLLE
RollE is an autonomous vehicle built using a 1/16 scale

remote control (RC) vehicle as the mobile base. Despite the
fact that RollE is built on top of an RC car, similar
technologies and machine learning frameworks used in full
scale autonomous cars are used in developing this platform.
This makes the software system potentially scalable to larger
car platforms with minimal changes to the code base. The
RollE system can be considered as having four layers: the
physical layer which consists of hardware components, and a
collection of three logical layers namely Perception, Control
and Learning. The term logical layer as used here refers to
conceptual layers representing the organization of related
software units.

A. Physical Layer
One of the objectives of RollE is to be modular; as such the

system consists of a number of interacting physical
components. The hardware components that make up the
physical layer are:

• RC Car: this is a 1/16 scale Exceed Blaze RC car that
acts as the mobile base of RollE. The Exceed Blaze
was chosen for its build quality and proportional
steering, which unlike the differential steering
mechanism used in some mobile robots [9,13,14],
closely imitates the steering mechanism of an actual
car. The RC car has actuators and effectors that enable
RollE to move in its environment. The Exceed Blaze
has the following electronic components:

o 7.2volt brushed direct current (DC) motor
which acts as the throttle motor

o MG996R servo motor which controls
steering

o WP-1040-Brushed Electronic Speed
Controller (ESC)

o 6 cell 1100 milliamp hour (mAH) 7.2 volt
Nickel Metal Hydride (Ni-MH) battery pack

o 4-channel 2.4 gigahertz (GHz) receiver and
transmitter

• RollE Pilot: this is a remote controller designed to
enable a user to manually drive the vehicle. It consists
of the following components:

o One Arduino Uno, an open source
microcontroller designed to enable reading
sensor inputs, performing computation and
effecting physical outputs through electronic
components. It serves as the brain of the
remote controller

o A pair of XY axes joystick modules, each
built from two potentiometers set up in a 2 -
dimensional fashion, enabling the movement
of a central arm along the X and Y axes to be
measured

o One liquid crystal display (LCD) module
which displays information

• Raspberry Pi: this is a single board computer that acts
as the on-board processor of RollE. The Raspberry Pi
was chosen for its affordable price point, as well its
plethora of I/O ports which gives the end users of
RollE the freedom to add on various other sensors.
The inbuilt general-purpose input/output (GPIO) pins
provide an interface to programmatically
communicate with low-level sensors and electronic
devices such as the ESC and servo motor on the
Exceed Blaze

• Raspberry Pi Camera: this is a single board module
fitted with a 5MP Omnivison 5647 fixed focus sensor.
It is capable of taking high resolution images and
gives RollE the ability to perceive its environment

• Router: this creates an on-board wireless network that
enables a user to wirelessly communicate with RollE
over considerable distances

• Adafruit PCA9685 16-channel pulse width
modulation (PWM) driver: this component enables
programmatic control of the steering servo motor and
throttle DC motor on the Exceed Blaze via pulse
width modulation signals

 These hardware components are assembled to form the
complete RollE system which consists of the RollE Rover
(mobile vehicle) and RollE Pilot (remote controller). The cost
of the complete RollE system is under $250.

RollE Rover: The default setup of the RC car wired the battery
pack and throttle motor to the electronic speed control. The
steering servo and ESC were connected to separate channels on
the 2.4 gigahertz receiver, enabling the car to be controlled via
a radio transmitter. We maintained the connection between the
battery pack, ESC and throttle motor. However, the steering
servo and ESC were rewired from the receiver to individual
channels on an Adafruit PCA9685 PWM driver. The PWM
driver was then connected to a Raspberry Pi via the on-board
ground (GND), voltage common collector (VCC), serial clock
(SCL) and serial data signal (SDA) GPIO pins. This
connection enables programmatic control of the servo and
throttle motors via pulse width modulation. The technique of
pulse width modulation enables a user to programmatically
vary the speed of the throttle motor or specify the desired angle
of turn of the steering servo motor. A Raspberry Pi camera,
which acts as RollE’s visual sensory node, was also connected
to the Raspberry Pi. Fig. 2 illustrates the final component
connections for the RollE Rover.

A collection of modular 3D printable components designed in
Autodesk Fusion 360 provide a functional and aesthetic way to
attach all the components of the RollE Rover to the mobile RC
car platform. These components are designed to vertically
stack on top of a base structure. This enables end users to
vertically stack additional components and sensors.

RollE Pilot: An Arduino Uno acts as the brain of the remote
controller; it takes sensor readings, performs computation and
outputs information. A pair of XY axes joysticks acts as the
sensors in this system; each joystick is connected to the
Arduino in a fashion that restricts readings to one axis per
joystick. With this configuration, one joystick takes readings
from the X-axis and controls throttle while the other takes
readings from the Y-axis and controls steering. An LCD
module displays the real-time readings from each joystick and
prints out error messages. Sensor readings from joysticks are
analog and fall in a range of values from 0 to 1023. These
values are remapped to a range between -1 to 1 and are
transmitted via serial communication from the Arduino to a
python script that separates each joystick’s reading and
broadcasts the values to the RollE Rover for actuation. Details
on this communication between the remote controller and the
rover are discussed in the logical layers section, under the
control layer.

Much like the RollE Rover, the remote controller also has
a collection of 3D printable components designed to hold all
components in a functional and aesthetic fashion. The base 3D
component of the remote controller allows it to be attached to
a standard breadboard, enabling end users to experiment with
the remote and attach additional components. Fig. 3 shows a
diagram of the component connections for the RollE pilot.

B. Logical Layers
The logical layers of the system each contain a collection of

related software units or processes that work together to
accomplish some goal. Processes within a layer can
communicate with each other as well as communicate with
processes from other layers. Inter-process communication is
achieved through a publish/subscribe-based communication
system. This allows processes to subscribe to specific topics of
interest in order to receive broadcast messages published on

those topics by other processes. RollE’s communication
architecture is implemented using the lightweight Message
Queuing Telemetry Transport (MQTT) protocol built for
connecting devices on networks with minimal bandwidth.
RollE consists of the following interacting logical layers:

• Control: the software units in this layer serve as an
interface between the user and the hardware
components of the physical layer. They are also
responsible for converting steering predictions from
processes in the learning layer into specific pulse
values the PCA9685 PWM module can understand.
This layer also contains a command-line software
implementation of the RollE Pilot (remote controller).
This console application gives users discrete control
of the throttle and steering values that drives RollE.

• Perception: the software units in this layer mainly
implement computer vision procedures for capturing,
formatting and either transmitting or locally storing
images obtained from the on-board camera sensor.

• Learning: the software units in this layer deal with
machine learning. They specify the architecture for
machine learning models and contain code that
manage data processing, data augmentation, training
the machine learning model and transmitting
predictions from trained models to other processes.
The machine learning model architecture of choice for
this problem domain is a convolutional neural
network. Convolutional neural networks are
multilayer perceptron machine learning algorithms
optimised for analysing visual data and feature
extraction by incrementally applying convolutional
operations to images at certain layers of the network.

Fig. 2. Diagram of the RollE Rover's component connections

1) Control Layer
 This layer contains a collection of software units that
directly interface with the components of the physical layer.
The software in this layer has three primary functions:

• provide programmatic control of the steering and
throttle motors of the RollE rover

• take joystick position readings and control the LCD
display on RollE Pilot

• transmit steering and throttle values from RollE Pilot
to the rover

Four software units “Actuation.py”, “RollE_Pilot.ino” and

“Pilot_Transmitter.py / Soft_Pilot.py” respectively provide this
functionality.

Actuation.py: This python script runs on the Raspberry Pi on
the RollE rover and uses the Adafruit_PCA9685 library to
specify which signals the PWM module sends to steering and
throttle motors. Input values are remapped from a range of -1
to 1 into pulse signals that correspond to maximum and
minimum duty cycles. This technique associates the maximum
and minimum steering servo angles and throttle motor speeds
with a value of -1 and 1 respectively. All values between this
range then represents different steering positions or throttle
speeds. As an example, a steering value of -1 would turn the
steering servo to its maximum position on the left, while a
steering value of 0 would turn the steering servo to its middle
position; similar logic applies to throttle speeds.

Limiting motor control inputs to the range -1 to 1 simplifies
controlling RollE for end users as they can create higher level
programs and only have to think of steering and throttle

outputs in terms of proportionality as opposed to raw duty
cycles. This also allows users to make simple modifications to
global maximum and minimum duty cycle values in
Actuation.py to change the range of responsiveness or
sharpness of steering turns without changing the outputs from
their higher-level programs. An example of such higher-level
programs is the software implementation of the RollE pilot.
This program takes keyboard inputs from users and outputs
steering and throttle values in the range -1 to 1 to control
RollE.

RollE_Pilot.ino: This Arduino sketch controls the RollE Pilot.
It takes readings from the 2-dimensional potentiometers that
make up each joystick module and remaps these analog values
from a range of 0 to 1024 to values in the range -1 to 1. It also
controls a 20x4 LCD module which displays the real-time
remapped steering and throttle values from the joysticks. This
code is flashed and ran on the onboard microcontroller of the
RollE Pilot.

Pilot_Transmitter.py / Soft_Pilot.py: The pilot_Transmitter.py
script communicates with the RollE Pilot via a serial interface
and transmits steering and throttle values obtained from the
controller to the RollE rover via the MQTT protocol.
Soft_Pilot.py is also a command-line software implementation
of the physical remote controller; it accepts user keyboard
inputs and outputs steering and throttle values in the -1 to 1
range to RollE also via the MQTT protocol. A user connects
the RollE Pilot to their computer and the Pilot_Transmitter.py
program, which runs on the user’s computer, transmits real-
time steering and throttle values to the “RollE_MKII/throttle”
and “RollE_MKII/steering topics” respectively. Actuation.py
subscribes to these topics, thus receives the transmitted steering

Fig. 3. Diagram of RollE Pilot's component connection

and throttle values and converts them to PWM duty cycles to
drive RollE.

2) Perception Layer
The software units in this layer implement computer vision

procedures for capturing, formatting and either transmitting or
locally storing images obtained from the on-board camera
sensor of the RollE rover. In the data collection mode, images
are stored locally on the Raspberry Pi. In autonomous mode,
images are served as inputs to a trained neural network model
running locally on the Raspberry Pi for steering predictions.
These images can also be transmitted via a socket connection
to the user’s computer for visualization. The computer vision
pre-processing operations performed on each image frame as
shown in Fig. 4 are:

i. a 180-degree rotation on captured images, done
because restrictions in the length of ribbon cable that
connects the Pi camera to the Raspberry Pi forced the
camera to be placed upside down during assembly of
the rover

ii. image is cropped to remove unwanted parts of image
above track.

iii. image is resized to fit the shape that the convolutional
neural network accepts. The acceptable shape must
have an image height of 66 pixels, width of 200 pixels
and 3 colour channels (3@66x200)

iv. the colour model of the image frame is converted
from RGB to the YUV colour space. The YUV colour
space represents images with one luma component
(Y) and two chrominance components (UV). The
input image is split into these individual YUV planes
before being passed into the convolutional network
for feature extraction.

3) Learning Layer
The software units in this layer deal with machine learning.

They specify the architecture of machine learning models and
contain code that manage data processing, data augmentation,
training the model and transmitting predictions from trained
models to other processes. The model used for this system is a
convolutional neural network based on the end-to-end
architecture shown in Fig. 5 and used by Nvidia in their self-
driving car experiment. For this project this convolutional
neural network architecture was implemented using Keras, a
deep neural network application programming interface–with
Tensorflow as the backend.

After data is collected during a data collection run, the
recorded collection of image frames and steering labels are
used for training. Data augmentation remains one of the easiest
methods to reduce overfitting in convolutional neural networks
[15], as such it is performed on the training examples to
produce variations that help the model learn more from
existing examples and reduce overfitting. Two key data
augmentation operations, random horizontal flips and random
shadowing are performed on training examples. Randomly
selected training examples are horizontally flipped, and their
corresponding steering angles negated to create new data
samples. Random shadows are also created on some training
examples to help the model learn how to handle real-world
scenarios where sections of captured images are dark due to
shadows from objects. Much like the approach used by
Krizhevsky et al. in AlexNet [15], the augmentation is done in
real time during training by a python batch generator which
allows generation of images without storing to disk. Fig. 6
shows sample augmented images.

Fig. 4. Sequence of image pre-processing steps. First image in
sequence is an original upside-down image as captured by RollE

Fig. 5. End to End convolutional neural network architecture
developed by Nvidia researchers [11]

V. EVALUATION
Two tests were conducted to evaluate the two primary modes
of RollE: the data collection mode and the autonomous mode.

A. Data collection
To ensure that the entire pipeline of data collection

processes functioned optimally, we drove the RollE Rover with
the remote controller in data collection mode on a tiled path
bordered on both sides by lawns as shown in Fig. 7. At the end
of this run, a total of 3147 images were captured and stored
with timestamps on the processor of the rover. A comma
separated values (CSV) file with the paths to the stored images
labelled with steering and throttle values was also created at the
end of the data collection run. This confirmed that the data
collection process worked as expected.

B. Autonomous drive
The autonomous drive test ensured that once a model has

been trained, RollE can successfully drive itself on tracks
similar to what it was trained on. The convolutional neural
network model was trained using the data collected in the data
collection test described earlier. Eighty percent of the gathered
data was used as the training set and the remaining twenty
percent as the validation set. The model was trained for 10
epochs with a learning rate of 0.0001. Performing the random
data augmentation operations described earlier, we generated
and trained on 20,000 samples each epoch. The mean squared
error of the trained model on the validation set at the final
epoch was an impressive 0.028. Fig. 8 shows a graph of the
mean squared errors of the model plotted for both validation
and training set at each epoch.

After training the model, RollE was set on the tiled path
and put in autonomous mode. It was observed that RollE
exhibited intelligence and intentionality in its driving. It
successfully made corrective turns to avoid the lawns and stay
on the tiled path. However, RollE seemed to favour driving
towards the left and after a couple of meters, it completely
swayed to the left and ended up on the lawn. This behaviour
was due to the distribution of the training data; while collecting
data we favoured steering towards the left on the remote
controller. The horizontal flipping data augmentation operation
helped balance out this data. However, the magnitude of
training examples with steering towards the left forced this
behaviour to be incorporated in the model.

Fig. 9 shows the distribution of steering values for a random
sample of 100 training examples. It can be seen that, most of
the steering was either towards the left (-1) or in the resting
position (0) in the original data. After performing data
augmentation, the data distribution became more balanced.
However, it is clear that left steering values would still be
favoured by the predictive model. The limitation of data
depending on the ability of a human agent necessitates that the
human agent generating the data drives RollE in a fairly

Fig. 6. Sample images showing results of data augmentation

Fig. 8. Graph showing the mean squared errors of the convolutional neural network
model during training. Model shows very good learning and a desired absence of

overfitting.

Fig. 7. RollE on tiled path bordered on both sides by lawns as described in
Data collection section

consistent fashion. Future work could experiment with some
self-supervised learning techniques as proposed by Stavens [5],
to eliminate the possibility of inconsistent data due to human
error. RollE was driven once again in a fairly consistent
manner on a different track shown in Fig. 10. A video showing
a data collection and autonomous driving demonstration of
RollE on this track can be seen in [16].

VI. CONCLUSION
This paper discussed the design of RollE, a low-cost

proportional steering autonomous vehicle development
platform. We have demonstrated with RollE that an affordable
autonomous vehicle (~$250) built with hobby grade electronics
can effectively be used to implement self-driving ideas using
scalable technology such as machine learning. The modular
nature of the software and hardware infrastructure of RollE
provides an affordable skeleton that would enable further
developmental work on the independent layers. RollE is
designed to be a research tool, equipping self-driving
researchers with a low-cost platform to test ideas and build
autonomous driving technology.

While the default end-to-end machine learning model
works quite well, further work can be done using the tools
provided by RollE to develop and test other machine learning
techniques. Future research on self-supervised learning
methods would be useful to eliminate the possibility of
inconsistent data collection. The physical layer would also
benefit from the addition of a Global Positioning System (GPS)
module, ultrasonic sensors and Light Detection and Ranging

(LIDAR) sensor for precise localization, obstacle avoidance
and advanced perception respectively.

REFERENCES
[1] World Health Organization, "Global status report on road safety 2015",

WHO Press, Geneva, 2015.
[2] E. Petridou and M. Moustaki, "Human Factors in the Causation of Road

Traffic Crashes", European Journal of Epidemiology, vol. 16, no. 9, pp.
819-826, 2000.

[3] C. Kerry and J. Karsten, "Gauging investment in self-driving
cars", Brookings, 2017. [Online]. Available:
https://www.brookings.edu/research/gauging-investment-in-self-driving-
cars/. [Accessed: 11- Feb- 2018].

[4] S. Thrun, "A Personal Account of the Development of Stanley, the
Robot That Won the DARPA Grand Challenge", AI Magazine, vol. 27,
no. 4, 2006.

[5] D. Stavens, "Learning To Drive: Perception For Autonomous Cars",
Ph.D dissertation, Stanford University, 2011.

[6] Webots: robot simulator, Cyberbotics.com, 2018. [Online]. Available:
http://www.cyberbotics.com/overview. [Accessed: 12- Aug- 2018].

[7] ROS: Robot Operating System, [Online]. Available: http://wiki.ros.org.
[Accessed: 12- Aug- 2018].

[8] "Gazebo", Gazebosim.org, 2018. [Online]. Available:
http://gazebosim.org.

[9] T. Karimpanal, M. Chamanbaz, W. Li, T. Jeruzalski, A. Gupta and E.
Wilhelm, "Adapting Low-Cost Platforms for Robotics Research", CoRR,
vol. 170507231, 2017.

[10] M. Bojarski et al., "End to End Learning for Self-Driving Cars", CoRR,
vol. 160407316, 2016.

[11] S. Thrun et al., "Stanley: The robot that won the DARPA Grand
Challenge", Journal of Field Robotics, vol. 23, no. 9, pp. 661-692, 2006.

[12] Defense Advanced Research Projects Agency. DARPA Grand
Challenge Rule Book. Washington, DC: U.S Government Printing
Office, 2004.

[13] S. Pedre, M. Nitsche, F. Pessagc, J. Caccavelli and P. De Cristóforis,
"Design of a Multi-purpose Low-Cost Mobile Robot for Research and
Education", Advances in Autonomous Robotics Systems, pp. 185-196,
2014.

[14] L. Paul et al., "Duckietown: An open, inexpensive and flexible platform
for autonomy education and research", 2017 IEEE International
Conference on Robotics and Automation (ICRA), 2017.

[15] A. Krizhevsky, I. Sutskever and G. Hinton, "ImageNet classification
with deep convolutional neural networks", 25th International
Conference on Neural Information Processing Systems, vol. 1, pp. 1097-
1105, 2012.

[16] RollE data collection and autonomy track test. URL :
https://youtu.be/1iLejcGQvJw

Fig. 9. Data distribution charts before and after data augmentation

Fig. 10. RollE driving on track

